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1 Introduction

The functioning and development of living organisms is controlled by large
and complex networks of genes, proteins, small molecules, and their mutual
interactions, so-called genetic regulatory networks. In order to gain an un-
derstanding of how the behavior of an organism – e.g., the response of a
bacterial cell to a physiological or genetic perturbation – emerges from such
a network of interactions, we need mathematical and computational tools
for modeling and simulation [10]. The predictions obtained through the ap-
plication of these tools have to be confronted with experimental data. This
gives rise to the problem of model validation, the assessment of the adequacy
of a model by comparing its predictions with observations, either already
available in the literature or obtained through novel experiments suggested
by the model.

The main challenges of model validation are twofold. First of all, the pre-
cision of the model predictions and the experimental data need to be brought
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in agreement. At present, quantitative information on kinetic parameters is
usually absent, thus making traditional numerical models and analysis tech-
niques difficult to apply. In addition, numerical predictions on the dynamics
of the system are difficult to verify, because available data are mostly qual-
itative in nature. A second challenge is to ensure that the comparison of
model predictions with experimental data is efficient and reliable. Models of
genetic regulatory networks of biological interest may become quite large, as
they include many genes and proteins, thus making manual verification of
dynamical properties error-prone or even practically infeasible. In this paper,
we propose an approach towards model validation addressing the above two
challenges (see [4] for an extended description).

2 Model validation by model checking

The approach extends our previous work on a method for the qualitative
modeling and simulation of genetic regulatory networks [12], supported by
the computer tool Genetic Network Analyzer (GNA) [11]. This method is
based on a class of piecewise-linear (PL) differential equation models orig-
inally proposed by Glass and Kauffman [15]. While abstracting from the
precise biochemical reaction mechanisms involved, the PL models capture
essential aspects of gene regulation. Moreover, their simple mathematical
form permits a qualitative analysis of the dynamics of genetic regulatory
systems to be carried out. More precisely, the dynamics of a PL system
can be described by means of a so-called qualitative transition system. This
qualitative transition system consists of a partition of the phase space into
a set of so-called domains that are regions where the system behaves in a
qualitatively-homogeneous way, a transition relation where the transitions
between domains correspond to solution trajectories connecting adjacent do-
mains, and a labeling function describing qualitatively the dynamical proper-
ties of the system in the domains, notably the sign pattern of the derivatives
of the variables [5]. Given that the variables denote protein concentrations,
the qualitative transition system provides predictions on the possible ways
in which the sign pattern of the derivatives of the protein concentrations can
evolve, a level of precision that is well-adapted to currently-available data.
Note that we speak of the sign pattern of the derivatives. This comes from
the way we deal with mathematical problems brought about by the piece-
wise nature of the differential equations we consider. Following an approach
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widely-used in control theory, we extend differential equations into differ-
ential inclusions. Given that a differential inclusion may not have a unique
solution, the sign of the solution derivatives may not be unique too. However,
we have introduced the notion of derivative sign pattern, and proved that
it is unique in each domain. We have shown that the qualitative transition
system is invariant for sets of parameter values defined by inequality con-
straints on the parameters that can be easily inferred from the experimental
literature. Moreover, the qualitative transition system can be computed by
means of simple symbolic rules using these inequality constraints.

The model-validation approach integrates the above qualitative modeling
and simulation method with model-checking techniques. These techniques
allow for the verification of properties of the behavior of discrete transition
systems, expressed as formulas in a temporal logic [9]. Highly-efficient algo-
rithms have been developed and implemented in tools called model checkers
for supporting this verification task. In order to verify whether the pre-
dictions of the system behavior are consistent with experimental data, we
express the observed properties as temporal logic formulas, compute the
qualitative transition system using qualitative simulation, and use model
checkers to verify whether the qualitative transition system satisfies the tem-
poral logic formulas. If it does not, then the PL model is inconsistent with
the experimental data and may need to be revised or extended. The com-
bination of qualitative modeling and simulation and model checking allows
large and complex networks to be verified, with the guarantee that no model
is falsely ruled out.

3 Analysis of nutritional stress response

in E. coli

The model validation approach proposed in this paper has been applied to
the analysis of the network controlling the nutritional stress response in Es-
cherichia coli. In case of nutritional stress, an E. coli population abandons
exponential growth and enters a non-growth state called stationary phase
[17]. On the molecular level, this growth-phase transition is controlled by
a complex genetic regulatory network integrating various environmental sig-
nals [16]. Understanding the molecular basis of this essential developmental
decision has been the focus of extensive studies for decades. However, there
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Figure 1: Network of key genes, proteins, and regulatory interactions involved
in the carbon starvation response in E. coli.
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Figure 2: PL differential equation and parameter inequalities for the TopA
protein in the network of Figure 1.

is currently no global understanding of how the response of the cell emerges
from the network of molecular interactions. Moreover, with some exceptions,
numerical values for the parameters characterizing the interactions and the
molecular concentrations are absent from the literature, which makes it dif-
ficult to apply traditional simulation methods. Based on data in the experi-
mental literature, we have constructed a PL model including key proteins and
their interactions involved in the response to a particular nutritional stress,
namely, carbon starvation [20]. The model includes genes involved in the
transduction of the carbon starvation signal (crp and cya), metabolism (fis),
cellular growth (rrn genes), and DNA supercoiling, an important modulator
of gene expression (topA and gyrAB) (see Figures 1 and 2).

Using a new version of GNA supporting our model-validation approach,
we have simulated two phenomena, namely the transition from exponential
to stationary phase, and the reentry into exponential phase after a carbon
upshift. In order to validate the model, the simulation results have been com-
pared with the available experimental data, using the model checker NuSMV
[8]. The predictions for the entry into stationary phase were found to be con-
sistent with most of the observed properties, such as the observed decrease of
the concentration the protein Fis [1], but not with the observed decrease of
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Biological property Temporal logic formula Result

Fis concentration decreases and becomes
steady in stationary phase
DNA supercoiling decreases during transi-
tion to stationary phase

EF(ẋfis < 0 ∧ EF(ẋfis = 0 ∧ xrrn < θrrn ))

EF((ẋgyrAB < 0 ∨ ẋtopA > 0) ∧ xrrn < θrrn )

True

False

Figure 3: Experimentally-observed properties of the network, their transla-
tion into temporal logic formulas (not detailed) and the result of the verifi-
cation of the formula by means of NuSMV.

the DNA supercoiling level [3] (see Figure 3). Consequently, the model has to
be revised. In [20], we propose to extend the model with interactions not yet
identified or with regulators not yet considered. Another prediction, the oc-
currence of damped oscillations in some of the protein concentrations after a
carbon upshift, is a surprising result, and is currently subject to experimental
investigation in our laboratory.

4 Related work

Model-checking or other formal verification techniques have been used be-
fore in systems biology for analyzing genetic, metabolic, signal-transduction,
and cell-cycle networks. Most approaches start from discrete models, such
as Petri nets [18], process algebras [19], concurrent transition systems [7],
rewriting logic [13], and Boolean networks and their generalizations [6]. In
this paper we show that model-checking techniques can also be used for more
conventional continuous models, in particular differential equation models,
when using qualitative abstractions to discretize the dynamics of the sys-
tem. In comparison with ideas along the same line [2, 14, 21], our approach
is adapted to a particular class of PL differential equations with favorable
mathematical properties, allowing the development of tailored algorithms
that scale up well to models of large and complex genetic regulatory net-
works.
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